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It is shown that so-called developed laminar gas flow in a two-dimen-
sional channel cannot continue beyond values of A = 0, 74, At X >

> 0, 74 the flow is accompanied by considerable deformation of the
velocity profiles in the direction of greater fullness, while the resis-
tance coefficient ¢ increases.

In [1] Thestkov gives an integral method of comput-
ing the laminar flow of a gas in a two-dimensional
channel based on the use of velocity profiles of the
form*

u = u, [2n/16 — (/15 )7, (1)

Y

where 1 =| pdy is the Dorodnitsyn variable, and ng =
Q

= nNly=p is the value of n at the boundary layer edge.

Let the velocity at the channel entrance be sub-
sonic, so that the boundary layers merge at a suffi-
cient distance from the entrance.

On the basis of the relations obtained in {2], we
shall show that the assumptions made in [1] about the
velocity profiles are physically warranted only up to
certain values A < Ap. Subsequent flow in the region
Ar < A < Agy is accompanied by a substantial change
in profile [1]. In the developed flow regiond =1, n =
=1, and the profile may be written in the form [1]

o= 1y [2F — H?] = uy {1 — (1 — H, @)
where

H = /7.

{
1
|

a3 - / ~ _ ,
// \\

az / - \

0 7 az ] o 7

Fig. 1. Relation between the velocity on the axis
uy and the parameter n: 1) at the instant of tran-
sition, and 2) in the precritical section.

Let us examine the more general family of profiles
with parameter n (0 <n < 1)

U= 1= (1 =) (3)

*The notation is the same as in [2].

Profile (2) corresponds to n = 1/2,
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Fig. 2. Variation of resistance coefficient in the
precritical section 1) without and 2) with account
for deformation of the velocity profile.

As shown in [2], the velocity on the axis uy and the
parameter n may be found from the system of quasi-
linear equations

L o Lyy = Ly,
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In these equations all the quantities are dimensionless.

The parameter f is proportional to the curvature of
the velocity profile on the channel axis
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and cannot be negative in view of its physical meaning.

The quantities I and Iy, can easily be found using (3),

Lo=wn+ 1), Ly=2n-| N 2 6)
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The mean velocity uy, can be expressed in terms of
the velocity on the axis u; and the parameter n,

ug =1/, =2u/(n +2). 6)

Now let
1 dn
n=—, == =0,
2 dx -

Taking into account that du;/dx > 0, from the sec-
ond equation of (4), we find that f = 0 when Ly < 0 and
f = 0when Ly = 0.

It is not difficult to see that (whenk =1,4)

Loy = Tuy/(1 -— 1) — 1/uy — 4uy/(3.75—2u3) .

Thus it may easily be seen that Ly < 0 when uy = up
and Ly = 0 when uy = uyy, where uyy is the root of the
equation Ly = 0. Thus with n = 1/2 the flow cannot con-
tinue beyond the limit uy > uyp. Putting Ly =0, we
find: ufp ~ 2.333 ufp + 0.312 = 0, so uly = 0.1424,

up & 0.378, which corresponds to uy, = 0,303 and the
mean Ay ~ 0,74, When A= Ap = 0,74, the quantity f
becomes zero. Putting f = 0 for all 0,74 < A = Agy,

as in [2], it is not difficult to find, from (4), the de-
pendence of n and velocity uy on x. Confining ourselves
to finding the dependence of n on uy, we obtain the equa-
tion

dfl/du1 = LZI/L22’

or in expanded form, after small transformations,

a T wi—a *

dn n-+2 )
43 (1 —ud) — (8u? — D (n + 1) (n + 2) — 243
(n + 2 + 27
This equation must be integrated, beginning from uiz =
= 0,1424 when n = 0,5, The integration is carried out
up to transition, i.e., until duy/dx — =, At the criti-
cal section we must have

Lll LIZ

= (),
Ly Loy
After transformation we have
ut—au? + b =0, @)
where
a= %(n—}— D (n+2),
2y »
p=LEDOED J CED fnt Din+2)—2.

Curve 2 in Fig, 1 was obtained by numerical inte-
gration of (7). As u, grows, the parameter n decreas-
es sufficiently rapidly to indicate a substantial defor-
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mation of the velocity profile, the profile becoming
fuller as uy increases.

Let us examine the change in coefficient of resis-
tance

= B ﬁ‘i.)
R~eGlum (a.’/ 0

in the precritical section, We find the ratio of ¢ for
uy > uyp = 0,328 to the quantity ¢, y at the beginning
of the precritical section:

¢ wQ™ [ du ) ou )w-m
Cors U (6_1/ 0/( dy Jo '

where the index 0,74 indicates that the corresponding
quantity must be determined for A = 0,74, Using equal-
ity (6) and noting, in addition, that

o ou du powm
(2) = (2) =p(2) - 22
dy Jo an/o onjo T B

and
pim=1—1l,=1—2/n+1)(n42),

we find, at the beginning of the precritical section,
whenn= 0.5, A=0,74, uy = 0,328, that

407 = ——2— -0.328 = 0.262,
m 2,5

(—‘;—z—)o - (1 — --2—1'_95;—_1;%“——) 2.0.328 = 0.605.
Therefore,
g n4-2 ?
Lot 462 [ T D)t ] @

If the velocity profile remained unchanged in the
precritical section, i.e., if n were 1/2, it would fol-
low from (9), as in [1], that the coefficient ¢ decreas-
es (curve 1 in Fig, 2), By substituting into (9) values
of n found after integration of (7), we can verify that
the resistance coefficient increases (curve 2 of Fig. 2).

Thus, the conclusions reached in [2] for turbulent
flow remain qualitatively the same for laminar flow.
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